skip to main content


Search for: All records

Creators/Authors contains: "Oyola, Rolando"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The electrical characterization and ammonia vapor (NH3) response of a p‐Si/n‐poly[benzimidazobenzophenanthroline] (n‐BBL) thin‐film junction diode are reported. The presence of a depletion layer at the n‐BBL/p‐Si interface is verifiedviacapacitance–voltage measurements, and the built‐in potential is ≈1.8 V. Using the standard diode equation for data analysis, the turn‐on voltage, rectification ratio, and ideality parameter are found to be 2 V, 16, and 6, respectively. The diode is also tested in the presence of NH3vapor where it retained its asymmetricJVbehavior with increased currents and an insignificant change in device parameters. NH3is believed to interact with the adsorbed O2species on the n‐BBL surface liberating electrons that enhance the diode current. The response time, recovery time, and sensitivity of the diode are 65 s, 121 s, and 52%, respectively. The removal of the gas restores the diode characteristics to their near original shape making it reusable. The diode is also electrically characterized as a function of temperature and is found to retain its rectifying behavior down to 150 K. The rectifying and gas‐sensing features make the diode multifunctional, which expands the range of applications of this ladder‐type conducting polymer.

     
    more » « less
    Free, publicly-accessible full text available March 9, 2025
  2. This work explored the fabrication of poly(lactic acid) and poly(triarylamine) nanofibers at concentrations <10 wt% suitable for electronic applications. A diode with a p–n junction shows a half-wave rectification efficiency of 15%.

     
    more » « less
    Free, publicly-accessible full text available October 30, 2024
  3. Alzheimer's disease (AD) has been consistently related to the formation of senile amyloid plaques mainly composed of amyloid β (Aβ) peptides. The toxicity of Aβ aggregates has been indicated to be responsible for AD pathology. One scenario to decrease Aβ toxicity is the development of effective inhibitors against Aβ amyloid formation. In this study, we investigate the effect of gallium nitride nanoparticles (GaN NPs) as inhibitors of Aβ40 amyloid formation using a combination of biophysical approaches. Our results show that the lag phase of Aβ40 aggregation kinetics is significantly retarded by GaN NPs in a concentration dependent manner, implying the activity of GaN NPs in interfering with the formation of the crucial nucleus during Aβ aggregation. Our results also show that GaN NPs can reduce the amyloid fibril elongation rate in the course of the aggregation kinetics. It is speculated that the high polarization characteristics of GaN NPs may provoke a strong interaction between the particles and Aβ40 peptide and in this way decrease self-association of the peptide monomers to form amyloids. 
    more » « less